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Abstract

We explore the threat of smartphone malware with ac-

cess to on-board sensors, which opens new avenues for il-

licit collection of private information. While existing work

shows that such “sensory malware” can convey raw sen-

sor data (e.g., video and audio) to a remote server, these

approaches lack stealthiness, incur significant communica-

tion and computation overhead during data transmission
and processing, and can easily be defeated by existing pro-

tections like denying installation of applications with ac-

cess to both sensitive sensors and the network. We present

Soundcomber, a Trojan with few and innocuous permis-

sions, that can extract a small amount of targeted private

information from the audio sensor of the phone. Using

targeted profiles for context-aware analysis, Soundcomber

intelligently “pulls out” sensitive data such as credit card

and PIN numbers from both tone- and speech-based inter-

action with phone menu systems. Soundcomber performs

efficient, stealthy local extraction, thereby greatly reducing
the communication cost for delivering stolen data. Sound-

comber automatically infers the destination phone number

by analyzing audio, circumvents known security defenses,

and conveys information remotely without direct network

access. We also design and implement a defensive architec-

ture that foils Soundcomber, identify new covert channels

specific to smartphones, and provide a video demonstration

of Soundcomber.

1 Introduction

Today’s mobile handsets are becoming full-fledged com-
puting platforms capable of supporting complete operating
systems, complicated applications and software develop-
ment toolkits. With this technological revolution, however,

come new security and privacy challenges. Like their PC
counterparts, smartphones are no exception to the plague
of data-stealing malware and recently there have been a
number of incidents1,2 and proofs-of-concept,3,4 illustrat-
ing that smartphone malware is indeed a credible threat.
The presence of unique sensors on these mobile platforms
opens even more avenues for illicit collection of private
user data. For example, a Trojan with access to the video
camera [15] or microphone can tape a user’s phone con-
versations and send the recording to other parties, which
enables remote surveillance. Industry and academia have
taken serious note of such threats, which we refer to as sen-
sory malware. Newly released smartphone OSes all offer
security protections: as an example, Google’s Android sep-
arates different applications with Java virtual machines to
mediate the interactions among them according to security
policies. Anti-virus companies are moving their products
to the mobile platform, e.g., McAfee’s VirusScan Mobile5

and Symantec’s Norton Smartphone Security.6 New secu-
rity services [5] have been proposed to control installing un-
trusted software with dangerous security configurations, for
example, applications that request both access to the micro-
phone and an Internet connection, and to control communi-
cation between applications [10].

Such protections seem to be reasonably effective against
phone-borne malware, whose complexity and stealthiness

1http://www.sophos.com/blogs/gc/g/2010/07/29/

android-malware-steals-info-million-phone-owners/
2http://news.cnet.com/8301-27080_3-20013222-245.

html
3http://www.bbc.co.uk/news/technology-10912376
4http://www.reuters.com/article/

idUSTRE66T52O20100730
5http://us.mcafee.com/root/product.asp?

productid=mobile_info
6http://www.symantec.com/norton/

smartphone-security
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are constrained by its smartphone host, a platform charac-
terized by its simpler design and weaker computing capabil-
ity compared with a desktop system. As an example, con-
sider the permission of microphone access, which has to be
granted to applications such as a voice dialer. The threat
of a malware with such a permission can be mitigated by
those existing approaches. Specifically, a behavior-based
malware detector [3] can pick up anomalous behavior such
as regular CPU-intensive operations and heavy use of band-
width, which could be associated with activities like per-
forming an in-depth speech recognition and transmitting a
large amount of phone recordings (typically, on the order of
100 KB per minute) to the Internet. A reference monitor
could deny installation of applications asking for both mi-
crophone access and other dangerous permissions: particu-
larly, access to the numbers being called, which allows mal-
ware to target a small set of calls involving high-value infor-
mation, and Internet connections. As a result, the malware
is left without any apparent way to communicate stolen in-
formation to its master.

Contrary to this intuition, we show that sophisticated
malware can be built over the smartphone platform to evade
such defenses. This is possible because of two new observa-
tions. First, the context of a phone conversation can be pre-
dicted and fingerprinted under some circumstances, which
enables an efficient analysis to extract a small amount of
high-value information from the conversation. A prominent
example is one’s interaction with an automatic phone menu
service, also known as interactive voice response (IVR) sys-
tem, which is routinely provided by customer service de-
partments of different organizations (e.g., credit-card com-
panies). The detailed steps of such an interaction were
found to be easily recognizable in our research, from a small
set of features of the conversation and related side-channel
information. As a result, sensitive data such as credit-card
numbers can be accurately identified at a small cost. Sec-
ond, like other computing systems, smartphones contain a
set of built-in covert channels, which can be leveraged to
transmit a small amount of sensitive information without
direct access to the Internet. To demonstrate that this threat
is realistic, we present an example of such malware in this
paper, called Soundcomber , a sound Trojan that masquer-
ades as an application with the legitimate need to use the
microphone, such as a voice dialer or a voice memo appli-
cation. Soundcomber is capable of stealing a user’s credit-
card number from her interactions with credit-card compa-
nies’ IVR. This is achieved through a suite of techniques
for hotline detection, profile-based extraction, lightweight
speech/tone recognition and covert-channel communica-

tion. The hotline detection component analyzes the initial
part of a call to determine whether an IVR is called, and
if so, which IVR (based on IVR fingerprinting). Based on
the detected IVR, Soundcomber uses a preset profile (state

machine) for that IVR and intelligently analyzes a phone
menu to determine the interaction path, i.e., the sequence
of menu selections in terms of the digits a user enters, that
leads to the situation where the user has to reveal her credit
card number.

Although performing speech recognition over the whole
recording is computationally intensive, Soundcomber only
needs to work on a small portion of it, according to the pro-
file, to identify the digits a user speaks or types to the IVR,
which turns out to be lightweight. Of particular interest here
is the analysis of typing: the tones produced thereby are ac-
tually not part of the phone conversation. We demonstrate,
however, that they can be picked up by the microphone
when the tones are played back to the user. While this is not
surprising, it turns out to be technically challenging to ex-
tract information from this audio side channel, because the
tones are drowned out by background noise in the record-
ings — the microphone picks up a faint “echo” of the dig-
its pressed. Using tailored signal processing techniques we
show that it is feasible to isolate these tones and recover the
actual digits pressed with high accuracy. We note that even
though we use credit card numbers as a proof of concept,
the same technique can be applied to target other valuable
information such as shorter PIN numbers, social security
numbers (the last four digits are often requested as part of
authentication), passphrases such as mother’s maiden name,
and so on. Thus, even though profile-based processing of
text transcripts can be done offline, profile-based process-
ing on the smartphone itself (a) reduces the amount of re-
sources needed to process the entire speech recording to
generate the transcript, (b) reduces the amount of data sent
by the smartphonewhichwould be noticeable if all recorded
phone calls are uploaded and (c) relieves the burden of the
malware master to process potentially lengthy transcripts
from a large number of sources (in Section 4 we provide
some conservative estimates to show such costs can be pro-
hibitive).

Because Soundcomber is doing the processing and ex-
traction of relevant data locally on the phone, the large
amount of phone call recordings can be distilled into a very
small amount of valuable data. If the whole recording were
transmitted to the master, the data required to be transmitted
would be several orders of magnitude larger. Further com-
pounding this communication woe is the fact that the mal-
ware cannot access the number being called and therefore
would have to record and transmit every single phone con-
versation if the processing was not done locally. The com-
munication/computation overhead incurred thereby would
significantly reduce the stealthiness of the malware. Given
the much simpler task of transmitting merely 16 digits of
a credit-card number, Soundcomber can easily make the
communication less observable: for example, this can hap-
pen through a legitimate network-facing application, such



as a browser. In the presence of a colluding application
with a networking permission, which we found is easy to
find or install (see Sections 4.1 and 4.2), Soundcomber can
pass the digits to it through a covert channel. This even
evades the protection based on mediating the overt commu-
nication between applications, as described in a recent pro-
posal [10]. Our research discovers multiple covert channels
on the smartphone platform, including file locks, vibration
and screen settings. Leveraging these channels to transmit
the digits is found to be completely practical.

Finally, since no existing defenses work on Sound-
comber, we designed and implemented a defensive architec-
ture that foils the malware. In essence, all audio recording
and phone call requests are mediated by a reference moni-
tor, which can disable (blank out) the recording when nec-
essary. The decision on when to turn off the switch is made
according to the privacy policies that forbid audio recording
for a set of user-specified phone numbers, such as those of
credit-card companies. We evaluate our prototype defensive
architecture and show that it can prevent our demonstrated
attacks with minimal processing overhead.

We now summarize our major contributions:

• Targeted, context-aware information discovery from

sound recordings. We demonstrate that smartphone-
based malware can easily be made to be aware of
the context of a phone conversation, which allows it
to selectively collect high-value information. This is
achieved through techniques we developed to profile
the interactions with a phone menu, and recover dig-
its either through a side-channel in a mobile phone
or by recognizing speech. We also show how only
limited permissions are needed and how Soundcomber
can determine the destination number of the phone call
through IVR fingerprinting.

• Stealthy data transmission. We studied various chan-
nels on the smartphone platform that can be used
to bypass existing security controls, including data
transmission via a legitimate network-facing applica-
tion, which has not been mediated by the existing
approaches, and different types of covert channels.
We also discovered several new channels, such as vi-
bration/volume settings, and demonstrated that covert
channel information leaks are completely realistic on
smartphones.

• Implementation and evaluation. We implemented
Soundcomber on an Android phone and evaluated
our technique using realistic phone conversation data.
Our study shows that an individual’s credit-card num-
ber can be reliably identified and stealthily disclosed.
Therefore, the threat of such an attack is real.

• Defensive architecture. We discuss security measures

that could be used to mitigate this threat, and in par-
ticular, we designed and implemented a defensive ar-
chitecture that prevents any application from recording
audio to certain phone numbers specified by privacy
policies.

2 Overview

Assumptions. Soundcomber is designed to work under
limited privileges. Specifically, we assume the Trojan is
granted access to the microphone, as required by its le-
gitimate functionality, but is denied network connections
and other risky permissions. Simultaneous access to mi-
crophone and networking is well known to be a dangerous
combination of permissions that should not be bestowed to
untrusted code [5], as a user’s speech is not supposed to be
recorded and transmitted to untrusted recipients. The mal-
ware is also denied other risky permissions such as inter-
cepting phone calls. It can acquire other information nec-
essary for its mission, e.g., the phone number being called,
through analyzing phone recordings. Avoiding dangerous
permission combinations can be achieved during the instal-
lation of an application: as an example, Android explicitly
displays the permissions requested by an application and
asks the user whether to grant these permissions (although
the options are limited to install/do not install). Alterna-
tively, a system like Kirin [5] could be used to disallow
dangerous combinations.

Architectural overview. The main goal of Soundcomber is
to extract a small amount of high-value private data from

phone conversations and transmit it to a malicious party. It
also aims to do so in a stealthy manner, by evading detec-
tion and not degrading the user experience, and under pos-
sibly restricted configurations as described above. These
goals are served by a design illustrated in Figure 1, which
includes two key components: a context-aware data collec-
tor (collector for short) and a data transmitter (transmit-
ter). The collector monitors the phone state and makes a
short recording of the calls it deems interesting based on
a profile database. The recording is then analyzed based
on the specific profile to extract user data that is passed to
the transmitter, which manages to send it to the malware’s
master. Since Soundcomber does not have direct access to
the Internet, this transmission needs to be done through a
second application, either a legitimate network-facing ap-
plication like the browser or a colluding program with the
networking permission. To deliver the data to the latter, the
transmitter needs to use covert channels when overt com-
munication is monitored by a protection mechanism [10].
In the following we explain how the Trojan can be used to
steal a phone user’s credit-card number.

Detailed credit-card theft scenario. Armed with access
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Figure 1. The left drawing shows the architecture of Soundcomber with the collection and commu-
nication part on the left, connected through an overt or covert channel to a second application on
the right which can access the Internet and forward extracted data. The right drawing focuses on
the collection part of Soundcomber. Audio is recorded using the microphone, and processed, and
high-value data is extracted and forwarded to the communication part.

to the microphone, Soundcomber records a person’s call
and performs an audio analysis of the recording. The pro-
cessing of the audio (i.e. recognizing speech and touch
tones) and data extraction (i.e. extracting relevant infor-
mation from transcribed speech/tones) is profile-driven so
that speech/audio processing is targeted at specific types
of information. As a proof of concept, we demonstrate
Soundcomber’s effectiveness at extracting credit-card num-
bers from spoken as well as touch-tone based audio sam-
ples. In this case, the profile contains a state machine of
a credit-card company’s IVR system, i.e., the automated
menu-driven systems usually encounteredwhen calling cus-
tomer service, thereby allowing Soundcomber to under-
stand the semantics of various parts of the audio recording
through a very lightweight analysis and target specific re-
gions of the audio for extracting the speaker’s credit card
number. An example of the profile is the sequence of the
digits the user enters for selecting different menu options,
which can be built through analyzing the IVR menu of a
specific credit-card company. This sequence can be eas-
ily recognized by Soundcomber’s collector component from
the tones of individual digits. Such a profile-driven analy-
sis provides a general approach to target specific regions
of speech samples and extract precise and relevant infor-
mation for improved analysis and minimal transmission re-
quirements of such data. More specifically, the identified re-
gions go through a tone/speech recognition, which is tuned
to identifying digits and therefore very efficient. Once the
credit card digits have been extracted, it is sent by the trans-
mitter component to the adversary in one of several ways. In
the case of a restricted security configuration, the transmit-
ter has several available options: it can leverage an existing
application such as the web browser by directly invoking it
to load a URL to a malicious website, thereby transmitting
sensitive information with relative ease; alternatively, it can

use one of several covert channels on the Android platform,
when a paired malicious application with network access is
present. In Section 4.2.1, we discuss several ways to ensure
such a paired application is installed.

In the follow-up sections, we elaborate our designs of
the collector and the transmitter, and our implementation
of Soundcomber on an Android phone. We also show that
the threat posed by the malware can be mitigated using
a context-sensitive reference monitor, which blocks audio
recording when certain numbers are being called.

Video Demonstration. We have uploaded a video demon-
stration of Soundcomber that shows the entire process from
calling a real credit-card company, to the (fake) credit
card number being extracted through audio analysis, trans-
ferred to a paired Trojan application via a covert chan-
nel, and then to the (pretend) Malware master’s server (lo-
cated in another country). We point the reader to our
video demo at http://www.youtube.com/watch?
v=_wDhzLuyR68.

3 Context-Aware Information Collection

The collector is designed to monitor the phone state to
identify and record phone conversations of interest, then de-
code the recording to perform a lightweight analysis, which
uses tone/speech recognition and the profile of the call to
locate and extract high-value information. This process is
illustrated in the right part in Figure 1. Here we elaborate
its design and implementation.

3.1 Audio recording

We now describe how Soundcomber can acquire an au-
dio recording of a phone call alongwith the number that was

http://www.youtube.com/watch?v=_wDhzLuyR68
http://www.youtube.com/watch?v=_wDhzLuyR68


dialed, which is later used for profile-based data extraction.

When to record. The first step to extract high-value infor-
mation such as credit-card numbers, is to record the user’s
phone conversation. To this end, Soundcomber monitors
the phone state and starts recording whenever the user ini-
tiates a phone call. This step is performed in a completely
unobtrusive and stealthy fashion — Soundcomber does not
even have to be running prior to the phone conversation, as
it will be started automatically by the Android OS.

Recording in the background. Once Soundcomber is
invoked when a phone conversation is initiated, it starts
recording the audio input from the microphone. This
recording is done in the background and no indication is
given to alert the user that the call is being recorded. Sound-
comber stops recording when the call has ended or after a
pre-defined maximum recording length. Since one’s sensi-
tive information, such as credit-card number, social security
number, etc., is often required at the beginning of a phone
conversation with an IVR, the recording can be short, typi-
cally a few minutes.

Determining the number called. After a call has ended,
Soundcomber needs to decide whether the recording de-
serves analysis. Soundcomber makes this decision based
on profiles specific to the number called. For example, if a
credit-card customer service line is detected, Soundcomber
knows that the recording could include a credit card num-
ber and therefore starts working on it using the profile of the
service. While Android offers a special permission, inter-
cept outgoing phone calls, that allows to easily determine
the called number, this is deemed an unusually high privi-
lege with significant security implications. A less obtrusive
path to retrieve the called phone number is by going through
a call list and extracting the number of the most recent call.
The permission needed to access the call list is less sen-
sitive and is shown as read contact data (it is conceivable
that voice dialer and memo apps would benefit from access
to the contact data). Nevertheless, to reduce the permis-
sions necessary for Soundcomber we decided to determine
the number called without any additional permissions by us-
ing the data already collected by Soundcomber, namely the
audio recording.

By analyzing the beginning of a recording, Sound-
comber checks whether it matches an internal database of
service hotlines and if that is the case, the recording is pro-
cessed further. Specifically, the analysis consists of look-
ing at the first segment in the recording, which for a ser-
vice hotline is typically a greeting or introduction. Sound-
comber will run speech recognition on the first segment and
compare the extracted words to an internal database of key-
words for different hotlines. If a match is detected, the
recording is processed further as described in Section 3.2,
using the profile of the detected hotline. To pick the defin-

ing keywords for each hotline, we wrote a program which
analyzes several samples of hotlines and determines the rel-
evant, non-overlapping keywords for each hotline. As an
example, the hotline of HSBC in America greets a user with
“Thank you for calling HSBC, the world’s local bank.” Our
tool determined that the keywords which were recognized
consistently and which did not overlap with other hotlines
were for, calling, local and banking. In fact, banking is not
contained in the recording, but the speech recognition con-
sistently returned banking as one of the keywords (in fact
“misrecognizing” bank), and as such it became a relevant
and reliable keyword.

The advantage of analyzing the beginning of a recording
is that the permissions necessary for Soundcomber can be
kept to a minimum. In return, Soundcomber has to spend
more time analyzing recordings to detect service hotlines.
Using either of the other two methods above (intercept call
or go through the call list) would be less expensive in terms
of computation required and would also be more accurate,
but would require Soundcomber to declare an additional
permission (intercept outgoing phone calls or read contact

data) potentially looking suspicious. In summary, with lim-
ited permissions to 1) read phone state and 2) record au-

dio, Soundcomber can record outgoing phone calls. Work-
ing under these permissions, Soundcomber does not know
the number of an ongoing call, and thus needs to make and
analyze a short (e.g., < 1 minute) recording of every call
and then discard the recording if no corresponding profile is
found.

3.2 Audio processing

We now describe the second stage of the collection pro-
cess. If a profile for the dialed number is found, Sound-
comber proceeds with audio processing (shown in Fig-
ure 2) to first decode the sound file, then determineswhether
speech or tone recognition is needed using lightweight anal-
ysis, and finally proceeds with either speech or tone extrac-
tion aided with profiles for targeting sensitive information.
We discuss profiling in detail in Section 3.3.

3.2.1 Tone recognition

The traditional analog telephone system uses tones to al-
low users to navigate the IVRs frequently used by customer
service lines. Specifically, today’s systems use dual-tone
multi-frequency (DTMF) [6] to transmit keypad presses on
a phone or mobile phone. For each possible key (0 to 9, *,
#) a combination of two tones is sent in-band through the
voice channel (see Table 1). To send a “4”, for example, the
phone will generate two sine tones, one at 770 Hz and one
at 1209 Hz and send them through the voice channel.

Technically, mobile phones do not send actual tones but
instead use a signaling channel to inform the mobile phone
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Figure 2. This figure shows the audio pro-
cessing step of Soundcomber, with the de-
coding of the audio and tone and speech
recognition before the output is forwarded to
the data extraction (not visible).

Table 1. DTMF tones
1209 Hz 1336 Hz 1477 Hz

697 Hz 1 2 3
770 Hz 4 5 6
852 Hz 7 8 9
941 Hz * 0 #

network of the pressed key. Nevertheless, a mobile phone
usually plays the corresponding tones locally to give aural
feedback to the user. We discovered that such tones are
leaked through a side-channel and can be used to identify
the phone user’s inputs. Specifically, although the tone is
played back only in the earpiece of the phone, the sound is
conducted through the inside of the phone and picked up
(faintly) by the microphone. Our experiments confirmed
that the tones can still be detected accurately, precisely be-
cause they occupy specific frequencies, and can be reliably
identified even with low signal-to-noise ratios.

For Soundcomber we used Goertzel’s algorithm [12], an
algorithm often applied for recognizingDTMF tones in dig-
ital signal processing [11]. Goertzel’s algorithm is more ac-
curate and also more efficient than a general FFT when used
to detect DTMF tones. This helps cover Soundcomber’s
analysis operations by using less processing power. Nev-
ertheless, using an unmodified Goertzel still did not pro-
vide the necessary accuracy. The tone energy levels are
much lower than what is normally the case because they are
recorded through a side channel. To increase noise rejec-
tion, we developed adaptive and frequency-dependent de-
tection thresholds as described below.

Using the Goertzel algorithm, Soundcomber calculates
the spectrum for all relevant frequencies fi. The algorithm
processes individual frames consisting of N consecutive
samples and outputs i spectral coefficients for each frame.
Consider an audio recording containing n frames with N
samples each. We compute the average spectral power for
each frequency i over the whole recording as follows:

γi =
1

n

n−1
∑

k=0

GN (x(kN, (k + 1)N − 1)),

where GN is the Goertzel algorithm using N samples (cor-
responding to one frame). For each frequency we set a
threshold γthr,i = β ·γi to detect in which frames frequency
i has a peak, with β constant across all i. Applying differ-
ent thresholds for different frequencies removes detection
errors caused by frequency-dependent noise in the record-
ings.

Soundcomber processes the audio recording frame by
frame and for each frame and for each frequency compares
the spectral energy of a particular frequency j, γj , with the
frequency-specific threshold γthr,j : if γj > γthr,j the fre-
quency j is assumed to be present in the current frame. In
our prototype we used a value of β = 2 so the thresholds
used were twice the average signal energy per frequency.
Those thresholds were found to be effective at identifying
tone signals (see Section 6).

After detecting the peaks, Soundcomber checks each
frame to see whether the peaks exceed the thresholds. Ide-
ally, if a DTMF tone is present in the recording, exactly two
frequencies are detected and the corresponding tone can be
determined. Noise in the recording can lead to the detection
of more than two frequencies. When this happens, all de-
tected frequencies except the two with the highest peaks are
eliminated. In the following, we present a visual example
of this detection process. In the example, three peaks are
detected (corresponding to the 1’s in the peak vector). The
lowest peak is eliminated to yield two peaks, which corre-
spond to the DTMF tone for “4”.
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Moreover, a tone is deemed to be identified only after the
combination of its two frequencies has been found consis-
tently in multiple frames in a row, typically at least 2 frames.

3.2.2 Speech recognition

To perform the speech recognition part for Soundcomberwe
first looked at the available options. The Android platform
contains speech recognition functionality using a Google
service, but the functionality is not usable for Soundcomber
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Figure 3. The audio signal shown in the left part is analyzed using Goertzel’s algorithm that generates
the two spectra on the right (for two different frequencies). Each frequency has a custom thresh-
old (dotted line). In this example, the spectral energy of both frequencies is above the threshold
simultaneously for several frames in a row, indicating that the digit “9” was pressed.

for several reasons. First, Google’s speech processing can-
not detect tones for tone recognition. Second, it can only
do speech recognition interactively by prompting the user,
and cannot be run in the background on an already recorded
audio file.7 In addition, the voice application offloads the
processing to Google by uploading the recorded audio over
the Internet, which is easily noticeable and thus not suited
for Soundcomber.

We instead ported PocketSphinx developed by the
Carnegie Mellon University8 to Android using the Native
Development Kit (NDK) and wrote an intermediate layer
between PocketSphinx and Soundcomber and integrated
both parts using the Java Native Interface (JNI).

Soundcomber segments the audio (described below) be-
fore processing the individual segments in PocketSphinx
to get the transcribed text. Segmentation of audio allows
Soundcomber to work only on some portions of the audio,
which reduces the overhead of speech recognition, thereby
making Soundcomber stealthier. Currently, Soundcomber
focuses on stealing information that can be transmitted as
digits (e.g., credit card numbers, social security number,
personal identification number, and so on) and we there-
fore adopted a language model that covers spoken digits for
extracting information. The hotline detection described in
Section 3.1 on the other hand uses a small language model
for general spoken text.

Segmentation. Speech recognition with PocketSphinx is
still fairly expensive in terms of processing time. To re-

7http://www.4feets.com/2009/04/

speech-recognition-in-android-sdk-15/
8http://www.speech.cs.cmu.edu/pocketsphinx/

duce this overhead to a minimum, Soundcomber does not
work on the whole audio recording directly: instead, it pre-
processes the recording to identify the segments that con-
tain speech. Soundcomber first analyzes the signal power
of the recording by calculating the mean power of individ-
ual frames containing ns samples. For each frame k, we
compute:

δk =
1

ns

ns
∑

j=0

x(j)2

The average power over the whole recording with nf

frames is then computed as:

δRecording =
1

nf

nf
∑

k=0

δk

By comparing the signal power δk of individual frames
with a threshold δthr = α · δRecording for a certain α, we
can locate the audio segments with sufficiently high sig-
nal power levels, which indicates the presence of relevant
sounds:

if

{

δk ≤ δthr silence
δk > δthr sound

Like tone recognition, we also check the presence of
multiple consecutive frames with signal power levels above
the threshold, which collectively form a segment. This sim-
ple approach is both efficient and effective, as shown in our
experimental study. Assuming for example that only 20%
of a recording contains speech (as could be the case when
navigating an IVR), then 60 seconds of audio would take

http://www.4feets.com/2009/04/speech-recognition-in-android-sdk-15/
http://www.4feets.com/2009/04/speech-recognition-in-android-sdk-15/
http://www.speech.cs.cmu.edu/pocketsphinx/


about 21.4 seconds of processing time if speech recognition
is run on the whole recording, but only 5.2 seconds if the
audio is segmented first and only the segments with actual
speech are run through the speech recognition.

3.3 Targeted data extraction using profiles

The objective of Soundcomber is to extract a small
amount of high-value data from an audio recording. This
cannot be achieved without understanding the semantics of
the recorded audio. Although an effective semantic analysis
in general can be hard, our research shows that it can cer-
tainly be done for some specific scenarios, particularly in-
teractions with IVRs. Such an analysis is based upon a pre-
determined profile, which indicates to Soundcomber how a
sequence of user behaviors (e.g., the digits entered or spo-
ken) can move an IVR to the state where sensitive user data
is input. The profile also allows Soundcomber to skip over
the segments that do not involve useful information, thereby
reducing overhead.

In their general form, profiles model a context and de-
scribe the location of high-value information under such a
context. An example of the context can be audio features of
some keywords, like “enter your PIN”, which is supposed
to be followed by one’s password. Again, our research fo-
cuses on IVRs, whose interactions with a phone user can be
modeled as simple state machines. The sequence of such
transitions, as observed from the user’s digit inputs recov-
ered from an audio recording, points to the position where
credit-card numbers or other important data is entered.

We first describe the profile for a phonemenu system and
then discuss how to apply the profiling idea more generally.

3.3.1 Profiling phone menus

Many businesses and organizations offer hotline services
through IVR systems. An IVR includes a phone menu,
which guides the caller step by step to the service she is
seeking. During such a process, confidential user informa-
tion, such as credit-card number, social security number,
PIN, etc., is input by the user for authentication and other
purposes. As an example, the phone menu of Chase bank
lets a customer first press “2” on the main menu, then “2”
on the submenu and finally “1” before asking a customer
to enter their 16-digit credit-card number. Therefore, a pro-
file for this menu needs to include a sequence (‘2’, ‘2’, ‘1’,
CC number), indicating the expected input to reach a state
in the IVR with high-value information. Following this se-
quence, Soundcomber can easily locate the segment that in-
cludes a credit-card number. The same idea can be applied
to model the interactions with other IVR systems. The ad-
versary can analyze an IVR phone menu offline, identify all
the sequences that lead to the desired user input, and then

assemble these sequences into a finite state machine, which
serves as the profile. Figure 4 shows the state machine
corresponding to the IVR described above. In our current
proof-of-concept implementation, Soundcomber stores lin-
ear sequences and detects credit numbers after the sequence
“2, 2, 1” for example. A profile can be expressed as {d1,
d2, d3, {target}}, where the di are the expected sequential
inputs and {target} the information which will be extracted.
We leave a full implementation with general finite state ma-
chines to future work.

To use such a profile, our prototype of Soundcomber first
runs tone recognition on the recorded audio to recover the
digits and lightweight speech recognition on the identified
segments to extract spoken digits. The output of tone and
speech recognition is combined into a transcript, which is
used to explore the state machine and identify the high-
value information in the transcript. If at any point a state is
reached which does not lead to high-value information, the
analysis is stopped and the recording discarded. A further
optimization is to run only tone recognition first and use the
digits to explore the state machine. Once a state is reached
where high-value data is available, the speech recognition
is run on the relevant segments.

3.3.2 General profiles

Apart from the finite state machine-based profiles, the con-
text of phone conversations can also be fingerprinted in
other, more generic ways, as described below. In-depth
studies and implementation of these approaches are left to
future research.

Speech signatures: Soundcomber could take advantage of
the sound samples included in the incoming audio such as
the voice prompt to “speak or type your credit card number
now”. If this phrase is detected, then the outgoing audio
immediately after this signature is likely to be a spoken or
typed credit card number.

Sequence detection. Since a sequence of 12–16 digits is
quite likely a credit card number, profiles can also instruct
Soundcomber to scan for long numeric sequences. While
this method will work in some cases, we found that a se-
mantic understanding of the speech transcript aided in pick-
ing out specific, targeted pieces of information. Neverthe-
less, sophisticated combinations of different techniques can
improve the accuracy of detection.

Speech characteristics. Profiles could specify certain
sound features that are typically exhibited by spoken credit
card numbers. For example, Soundcomber could perform
a high-level analysis of speech to hone in on specific fea-
tures unique to spoken credit card numbers (e.g., rhythmic
or monotonous speech). Once these features are observed,
Soundcomber can apply targeted speech extraction on the
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identified segments.

4 Stealthy Data Transmission

Once the sensitive information has been obtained via the
collection phase, it must be transmitted to the malware’s
master stealthily. This is where the advantage of Sound-
comber of processing recorded audio and extracting high-
value information locally becomes apparent. If the mal-
ware master were to do processing centrally, Soundcomber
would have to transmit approximately 94KB of data for
each minute of recorded audio. This would not only make
it more difficult for Soundcomber to operate stealthily, but
would also place a much larger burden on the infrastructure
of the malware master. Assuming for example anywhere be-
tween 100, 000 and 1, 000, 000 infected smartphones9, this
could easily generate in the order of several tens of giga-
bytes to a terabyte of data per day10 which would need to be
processed centrally by the malware master. By extracting
the relevant information locally, Soundcomber significantly
reduces the data necessary to be transmitted to the malware
master. For one call, a one-minute recording would require
94KB to be transmitted to the malware master if no local
processing is done, but if a credit card number is extracted
locally then at most 16 bytes have to be transmitted, a reduc-
tion by a factor of 6000. Transmitting such a small amount
of data is much easier done stealthily and the remaining
work for the malware master becomes minimal.

As already mentioned, we assume Soundcomber does
not have permission to use the network to circumvent tools

9Android malware steals info from one million phone owners—
http://www.sophos.com/blogs/gc/g/2010/07/29/

android-malware-steals-info-million-phone-owners/.
10Assuming between 100, 000 and 1, 000, 000 infected smartphones,

on average 5 calls a day, where Soundcomber records the first minute of
each call.

such as Kirin [5]. In fact, a recent paper [10] further pro-
poses to mediate the explicit communication between two
untrusted applications, by restricting access from one appli-
cation to another based on installation-time permissions and
run-time state. We present two methods that will circum-
vent such prevention and detection mechanisms. In the first
method, Soundcomber uses a legitimate, existing applica-
tion with network access (such as the browser) to transmit
the sensitive information. In the second method, Sound-
comber uses a paired Trojan application with network ac-
cess and communicates with it through a covert channel.
Both methods circumvent known, existing defenses.

4.1 Leveraging third-party applications

The permission mechanism in Android only restricts
individual applications, not the relations between appli-
cations. This allows Soundcomber to communicate with
its master through a legitimate network-facing applica-
tion, such as a web browser. Specifically, the malware
can request the browser to open an URL in the form
http://target?number=N with N the credit card
number to pass it to a target web site. A weakness of this ap-
proach is that the transmission is more noticeable to the user
because the browser will be brought to the foreground. Such
an activity, however, could be easily “explained away”. For
example, an application which displays ads in its interface
can pretend to open a browser window for a more detailed
version of an ad, first transmitting the valuable information
before immediately redirecting to the actual ad. Or a user
could be tricked into believing that a new browser window
is opend caused by a stray click that leads to a standard sites
such as Google or CNN. Nevertheless, we consider this ap-
proach to be more intrusive than a paired Trojan application,
which once installed, performs all such communication in
the background.

http://www.sophos.com/blogs/gc/g/2010/07/29/android-malware-steals-info-million-phone-owners/
http://www.sophos.com/blogs/gc/g/2010/07/29/android-malware-steals-info-million-phone-owners/


4.2 Covert channels with paired Trojans

Next we consider communication between two Trojan
applications. In this case, Soundcomber is paired with a
Deliverer Trojan with network access, which transmits the
extracted sensitive information (typically only a few dozen
bytes) to the malware master over the Internet. Under the
current Android security model, the Soundcomber and De-
liverer applications could communicate through overt chan-
nels, however such communication will be limited with re-
cently proposed defenses [10]. To be as stealthy as possible
and to circumvent such defenses, covert channels on the An-
droid platform can be used instead to covertly transfer the
extracted information from Soundcomber to Deliverer and
thereby to the malware’s master. This paper thus also iden-
tifies and evaluates new covert channels of communication
on smartphone platforms and demonstrates that communi-
cation through such channels is realistic for sensory mal-
ware.

4.2.1 Installation of paired Trojan applications

To leverage a second installed application (Deliverer) for
transmitting the extracted information to the Internet, we
have to convince the user to install such an application. We
assume that Soundcomber itself is packaged as a Trojan into
an application that is attractive enough to get users to install
it. Once the user has installed Soundcomber itself, we have
to make sure that the Deliverer application is also installed.
We have explored a number of options and believe that they
will trick enough users into installing the Deliverer applica-
tion.

Since an Android application can launch the installation
of another application, we investigated two possibilities:

Pop-up ad. The Deliverer application could implement a
cover functionality and hide the transmission functionality
as a Trojan part. When the user first executes the cover func-
tionality of Soundcomber, a pop-up ad is displayed, adver-
tising the Deliverer application (respectively its cover func-
tion) as another fun, hip, cool, useful application. When
clicking on the ad, Soundcomber will tell Android to open a
web browser with the webpage of the Deliverer application
or even directly initiate the download in the web browser.

Packaged app. An Android application can include cus-
tom resources, e.g., the installation file for the Deliverer ap-
plication can be included in the Soundcomber app. When
Soundcomber is started for the first time, it launches the
installation of the included application package for the De-
liverer app. Users might thus be tricked into confirming the
installation, or be gently persuaded by informing them that
a “necessary helper application” has to be installed before
Soundcomber (respectively its cover function) can be used.

4.2.2 Covert channels on the smartphone

We discovered several covert channels on the Android plat-
form, some of which are specific to Android, and others
that are specific to Android’s underlying Linux system. The
channels have different properties in terms of stealthiness,
transmission rate and reliability (i.e., error rate). For Sound-
comber even low bit-rate covert channels are sufficient to
transmit the high-value information, which is typically very
small. Here we describe a few covert channels we found
on Android that make use of vibration settings, volume set-
tings, the handset screen, and file locks.

Vibration Settings. The covert channel based on vibration
settings is specific to Android. Any application can change
the vibration settings and every time this setting is changed
the system sends a notification to interested applications.
Our prototype exploits these notifications as a communica-
tion channel. Soundcomber codes the sensitive data into a
sequence of vibration settings and then applies these set-
tings sequentially. Deliverer listens to the setting changes
and decodes them back into the data.

While changing the settings might indirectly be noticed
by the user if a call or message arrives during transmission,
saving and restoring original settings after the transmission
as well as transmitting at opportune times (e.g., at night) can
mitigate this problem.

In our experiments we achieved a bandwidth of 87 bits
per second through this channel (see Section 6). Higher
bandwidth was prone to overload the Android system with
notifications. Nevertheless, 87 bits seems sufficient for
transmitting the small amount of data Soundcomber col-
lects: for example, sending the 16 digits of a credit-card
number (54 bits) takes less than 1 second. Other advantages
of using this channel include that no permissions are needed
to access it and it does not leave any traces. We thus sug-
gest that isolation mechanisms like the one proposed in [10]
for smartphones must also restrict covert communication
through event notifications, otherwise they will not provide
complete mediation of communication channels.

Volume settings The volume-setting covert channel is sim-
ilar to the vibration-setting channel. The difference is that
changes in the volume setting are not automatically broad-
casted, which means that two applications communicating
through this channel have to set and check the volume alter-
natively, requiring tighter synchronization in time (i.e., the
receiving application has to be certain that it only checks
after next setting has been set by the sending application).

On the other hand, because the volume is a setting be-
tween 0 and 7, the channel allows Soundcomber to transmit
3 bits per iteration. Generally speaking, the sending appli-
cation will set the volume at times ts = k · ti ms within
each second, for k = 0, . . . , (1000ms

ti
− 1) while the re-

ceiving application will read the volume setting at times



tr = k ·ti+(ti/2). Initial experiments indicated that setting
and getting the volume settings takes on the order of 7ms, so
we set the iteration length to ti = 20 ms and thus achieved
150 bps. Specifically, the sender will set the volume at times
0ms, 20ms, 40ms, and so forth, while the receiver will read
the volume at times 10ms, 30ms, 40ms, and so on. At this
speed, however, here is a small chance that if Android is
doing some “housekeeping” during the transmission that ei-
ther the sender or receiver will miss a window and get out
of sync. No permission is needed to exploit this channel.

Screen Another channel specific to Android, which might
well be specific to mobile phones, is the mobile phone
screen. This channel is particularly interesting because it
turns out to be an invisible visible channel. Mobile phones
typically conserve power by switching off the screen if the
user is not using it for a certain period of time. The screen
can be re-awakened through a press of a button or touching
the screen.

Android allows individual applications to influence the
screen. For example, applications that need to prevent the
screen from dimming out (e.g., a car GPS application) can
request a wake-lock from the operating system. Acquisition
of the wake-lock immediately turns on the screen if it was
dark, and the screen will only be switched off again when
the lock is released. The change of the screen states (on or
off) triggers a notification mechanism, which Android uses
to inform applications of the screen setting. These notifica-
tions are used by Soundcomber to create a covert channel
with its colluding application. More specifically, Sound-
comber acquires and releases a wake-lock at regular inter-
vals, which transmits to Deliverer one bit of information for
each iteration through the notifications issued by the sys-
tem.

At first glance, this channel is not stealthy: the alteration
of screen states seems to be too conspicuous to go unno-
ticed. We found, however, that on the Android G1 phone, if
the wake-lock was held for a short enough time, a latency in
the electronics of the device would prevent the screen from
actually turning on, but the notification that the screen had
been turned on was still sent. The channel is thus again
invisible to the user.

Compared with the vibration and volume settings
channels, exploiting this channel needs the permission
WAKE_LOCK, which is explained by Android as prevent

phone from sleeping. Also, the bandwidth of the channel
is fairly low, less than 5.29 bits per second. Nevertheless,
it offers a practical way to deliver a small amount of data
within a short period of time: for example, sending a 16-
digit credit card number (54 bits) takes around 11 seconds.

File Locks Covert channels using file locks have been
known since 1989 [9] and are far from specific to the An-
droid platform. We show, however, that this channel also

works well (we characterize the bit rate) on a smartphone
platform and can be used to practically leak sensitive data
to an unauthorized party. The basic idea is that two applica-
tions can stealthily exchange information through compet-
ing for a file lock.

Specifically, if Soundcomber wants to signal a 1 to De-
liverer, it requests a file lock on a file shared between them.
Deliverer also tries to lock that file: if this attempt fails,
‘1’ is sent, otherwise, ‘0’ is sent. Communication through
this channel can even evade the stringent Bell-LaPadula
(BLP) [2] model: a high process (the process with access
to microphone) can read-lock the shared file, while the low
process (Deliverer) tries to get a write-lock on it. This does
not violate the “no-reads-up” and “no-writes-down” poli-
cies of the BLP.

Our implementation of the file-locking channel on An-
droid employs an efficient synchronization mechanism.
Soundcomber and Deliverer each maintain m signaling

files, S1 · · ·Sm and one data file. The signaling files are or-
ganized in a round-robin fashion. Before transmitting data,
both parties lock their own signaling files (S1 to Sm/2 for
Soundcomber, Sm/2+1 to Sm for Deliverer) and Deliverer
also blocks itself by attempting to lock S1, a file already
locked by Soundcomber. Soundcomber then sets/releases
the lock on the data file according to the first bit it wants
to transmit, and after that, wakes up Deliverer by releas-
ing its lock on S1 and blocks itself by waiting for the lock
on Sm/2+1, the first of the signaling files already held by
Deliverer. Deliverer then tests the data file to acquire the
bit, removes its lock on Sm/2+1 to invoke Soundcomber
and waits for the next bit by attempting to lock S2. By ro-
tating through the m signaling files, the two processes can
synchronize themselves during the data transmission, which
helps achieve a bandwidth of more than 685 bps. Develop-
ing the idea of rotating file locks became necessary because
experiments showed that Android does not honor the se-
quence of file locking requests if the requests are made very
closely spaced.

5 Defense Architecture

The current Android platform performs only static per-
mission checks, without taking context information into ac-
count. For example, once an application is granted the
permission to record the microphone, it can always make
use of the permission, independent of the phone state (e.g.,
idle/call in progress) or the number currently called. This
threat cannot be mitigated by the reference monitor archi-
tectures proposed in prior research [10]. Even though such
work considers context while regulating inter-application
communication, the collection of one type of sensor data
based on other context information is not yet supported.
In our research, we built the first defense architecture to



counter this threat. Our approach is not meant to be a re-
placement for the defense mechanism proposed by prior re-
search. Instead, we intend to develop a new technique that
can be incorporated into existing mechanisms. To this end,
we implement a prototype to add a context-sensitive refer-
ence monitor to control the AudioFlinger service, the An-
droid kernel service in charge of media data. This approach
prevents audio data from leaking to untrusted applications
during a sensitive call.

Our reference monitor is designed to block all applica-
tions from accessing the audio data when a sensitive call is
in progress. It consists of two components:

• Reference Service: The reference service determines
whether the phone enters or leaves a sensitive state by
monitoring call activity. When a sensitive call is made
the reference service alerts the controller. In our pro-
totype the reference service is implemented in the RIL,
the “radio interface layer” which mediates access from
the Android OS to the baseband hardware. Any at-
tempt to make a call, no matter how it is made, has
to pass through the RIL. The reference service inter-
cepts attempts to make outgoing calls and checks the
called number. Whenever a call to a sensitive number
is made, it notifies the controller.

• Controller: The controller embedded in the Au-
dioFlinger service mediates access to audio data. It
operates in one of the following two modes:

– Exclusive Mode: In exclusive mode, the con-
troller blanks all audio data being delivered to
applications requesting audio data. Instead of the
actual audio data, these applications will simply
record silence.

– Non-Exclusive Mode: In non-exclusivemode, the
controller does not intervene and the audio data
is delivered normally to applications.

When the reference service detects that a sensitive call is
being made, it alerts the controller. On receiving the alert
from the reference service, the controller enters exclusive
mode and blanks all audio data being delivered to applica-
tions. Once the sensitive call has ended, the reference ser-
vice again notifies the controller, which reverts back to non-
exclusive mode. Our reference service can be used by exist-
ing reference monitor architectures to intercept phone calls,
and use the controller to enable/disable recording from the
microphone. Although we focus on audio data, the princi-
ple of adding context information to protect Android kernel
services can be extended to protect other sensor data. We
believe that existing architectures can use a similar tech-
nique to defend against sensory malware.

With the controller being a part of the AudioFlinger, we
assume that the integrity of the Android OS itself is guaran-
teed. If the OS has been compromised by malware then the
malware already has access to all data and can circumvent
the controller. With the integrity intact, on the other hand,
the controller can guarantee that no application can record
audio while a sensitive call is in progress. Since the refer-
ence service is on the critical path to making a phone call,
we measure the delay added by the service in Section 6 and
show that it is negligible.

6 Evaluation

In this section, we report on our evaluation of Sound-
comber. Our experimental study was aimed at under-
standing Soundcomber’s capabilities to detect whether a
hotline number was called, extract high-value data from
a phone conversation using profiles, recover digits from
tones/speech and transmit them through covert channels.
We also wanted to determine the performance of these op-
erations and the overhead they incurred.

6.1 Experiment settings

We carefully designed a set of experiments which stud-
ied hotline detection, tone/speech recognition, profile-based
data discovery and different covert channels. Speech
recordings from three participants were used.11 Each par-
ticipant was asked to speak or dial menu choices or credit
card numbers, just as they normally would during a call to a
bank service line. These credit card numbers were obtained
from an online automatic generator.12 After each phone
conversation, Soundcomber analyzed the recordings, identi-
fied and delivered the credit-card numbers, which was mon-
itored and measured to evaluate the effectiveness and per-
formance of its operations. All the experiments were per-
formed on an Android development phone with Firmware
version 1.6 and kernel version 2.6.29-00479-g3c7df37. The
phone contained a 1GB SD card and was connected to the
Internet through Wi-Fi. We elaborate on the settings for in-
dividual experiments below.

Service hotline detection. When detecting whether the
user called a service hotline it is important to minimize
false positives. Too many false positives means that Sound-
comber spends time analyzing phone calls that do not con-
tain relevant sensitive information such as credit card num-
bers. We tested Soundcomber with 5 different service hot-
lines of financial institutions. For each hotline we recorded
4 samples and then extracted keywords using speech recog-
nition to build a database of hotlines. The accuracy of the

11Indiana University IRB Approved Protocol ID: 1001000932.
12http://mediakey.dk/˜cc/wp-dyn/

credit-card-number-generator.php

http://mediakey.dk/~cc/wp-dyn/credit-card-number-generator.php
http://mediakey.dk/~cc/wp-dyn/credit-card-number-generator.php


detection was then tested using another set of 4 recordings
each per hotline. To determine the false positive rate, we
created 20 simulated normal phone calls by formatting nor-
mal speech from a corpus13 to look like a phone conversa-
tion. We then ran the hotline detection on those simulated
calls.

Tone recognition. To test the accuracy and performance
of tone recognition, we recorded 20 samples of phone con-
versations with a phone line that we controlled.14 The out-
comes of the recognition were compared with the real digits
the participant entered to determine the accuracy. We also
measured the performance. The Goertzel’s algorithm we
implemented (see Section 3.2.1) utilized a frame length of
N = 205 samples, corresponding to 25.625ms. Our exper-
iment required 5 frames in a row to minimize false positives
when detecting DTMF tones, and used a detection threshold
parameter β = 2 (see Section 3.2.1).

Speech recognition. The performance of speech recog-
nition was tested by analyzing 60 recordings of simulated
phone calls (20 samples from three subjects each) where a
user spoke a credit card number by pronouncing individual
digits. Again, the accuracy can be determined by compar-
ing the recognized numbers with the spoken numbers and
the performance was measured using the getrusage()
function call.

Profile-based data discovery. To test the effectiveness of
using profiles to discover high-value data, we created two
profiles describing service hotlines. Participants then sim-
ulated 20 calls following a specific script for each of the
hotlines and tested whether Soundcomber correctly recog-
nized and extracted the high-value information. We also let
the participants deviate from a given script to understand
whether Soundcomber could correctly identify the opera-
tions that did not lead to high-value information.

Covert channel study. The most important performance
measurement for covert channels is bandwidth in bits per
second, which determines how long it takes to covertly
transmit the extracted high-value information from Sound-
comber to the Deliverer application. To measure the band-
width of each channel, we ran a pair of applications to ex-
change 440-bit (55-byte)messages through the channel. All
channels were parameterized to guarantee zero bit errors,
sometimes at the cost of achievable bandwidth.

Reference monitor. To measure the performance impact
of the reference monitor we first made the relevant modifi-
cations to the AudioFlinger service and then compiled the
modified Android OS and installed it onto an Android de-

13VoxForge—http://www.voxforge.org/
14Our demo shows a real phone call to a real credit card company, but

we hesitated to have our subjects call real credit card company hotlines
repeatedly. We thus had subjects follow a script for a simulated phone call.

veloper phone (HTC Dream). We then made test calls to
numbers marked as sensitive to measure effectiveness and
performance.

6.2 Experiment results

6.2.1 Effectiveness

Service hotline detection. When testing the hotline detec-
tion on 20 recordings of actual hotlines, Soundcomber cor-
rectly identified 55% of the hotlines (among 5 different hot-
lines), detected 5% as the wrong hotline and missed 40%
of hotline calls. Running the detection on 20 recordings of
simulated normal conversations resulted in 100% being cor-
rectly identified as normal conversations, i.e., the false pos-
itive rate of the hotline detection is 0%. If a malware master
includes detection information for the 5 largest financial in-
stitutions, the accuracy of the hotline detection is sufficient
for Soundcomber to detect more than half of all the calls
to those hotlines on average and analyze them, while not
analyzing any calls containing a normal conversation. We
deem this performance as sufficient for a malware master to
collect a large number of credit card numbers.

Tone/speech recognition. Table 2 presents the accuracy
of tone/speech recognition Soundcomber achieved. For
speech recognition, Soundcomber identified 55% of the
credit card numbers we tested without any error, and 20%
with either one digit wrong or one missing digit. Note
that single digit errors are often easy to correct: given the
known digit pattern of credit card numbers and the use of
the Luhn algorithm to remove invalid sequences, the brute-
force search space is only 16 possible credit card numbers,
or, when knowing the bank name, 12. The attacker could
try charging each of these 12 numbers to see which one is
valid. Tone recognition was found to be even more suc-
cessful: Soundcomber could recover 85% of all credit card
numbers correctly, and incur one-digit errors for the remain-
ing 15%.

Detection by anti-virus applications. We tested two anti-
virus applications for the Android platform: VirusGuard
from SMobile Systems15 and AntiVirus from Droid Secu-
rity.16 Neither of them reported Soundcomber as malware,
even when it was recording audio and uploading data to the
malware master.

Reference monitor. To test the performance overhead of
both reference service and controller, we implemented them
on an Android Developer Phone (HTC Dream). Since the
reference monitor is on the critical path it is effective at
blocking recording of audio from sensitive calls. We tested

15http://www.smobilesystems.com/
16http://www.droidsecurity.com/

http://www.voxforge.org/
http://www.smobilesystems.com/
http://www.droidsecurity.com/


Table 2. Accuracy of speech and tone recognition
No error 1 error 2 error > 2 error

Speech 55% 12.5% 10% 5%
Tone 85% 5% 0 0

1 missing 2 missing > 2 missing
Speech 7.5% 7.5% 2.5%
Tone 10% 0 0

this functionality and present the performance overhead be-
low.

6.2.2 Performance

Service hotline detection. As described earlier, Sound-
comber looks at the first segment of a recording to deter-
mine the hotline. In our experiments the first segment had
an average length of 6.1 seconds (σ = 3.9s) and recognition
of the hotline took on average 34.6 seconds (σ = 23.0s).
In general, hotline detection requires computation time of
around 6 times the length of the segment analyzed.

Tone/speech recognition. The performance of tone/speech
recognition is given in table 3, including time, power and
memory. The recordings with speech inputs had an average
length of 19.7 seconds, with a standard deviation of 4.485
seconds. It took Soundcomber 6.749 seconds on average to
analyze and extract relevant menu choices and credit card
numbers. However, due to other delays caused by I/O oper-
ation and scheduling, it took Soundcomber a total of 7.168
seconds on average from starting to output the final results.
The recordings with tone-based inputs were much longer,
45.3 seconds on average. Presumably, this was caused by
the extra time needed to switch between listening and tap-
ping numbers. However, Soundcomber turned out to be ef-
fective at processing such recordings. It located credit-card
numbers and extracted them within 5.524 seconds on av-
erage. The total time for such operations was found to be
7.694 seconds on average.

We ran PowerTutor17 to measure the power consump-
tion of Soundcomber. The average consumptions for an-
alyzing speech and tone data were 94 mW and 101 mW
respectively, which is higher than operations such as web
browsing (varying between 54 mW and 87 mW, depend-
ing on the content of a web page). This is understandable
because Soundcomber requires a number of computation-
intensive operations. However, such difference does not
seem to be significant. Also, Soundcomber could take
measures to make its power consumptions less conspicu-
ous, through distributing the analysis over a longer period
time as discussed in Section 7. The memory usage was
measured in our study by running the Android phone in

17http://powertutor.org/

debugging mode and using the Android developing plug-
in for Eclipse18 to read the heap size. Soundcomber took
less than 3MB memory, which is reasonable, given some
Android applications consume similar amounts of memory
(e.g., vRecorder, voicememo, calendar and alarm clock: 2.8
MB each, VoiceDialer: 3.0 MB), and others could use even
more (browser: 5.0 MB).

Covert channels. We also measured the bandwidths of dif-
ferent covert channels: the file-locking channel achieved
685 bps and the vibration channel transmitted data at a rate
of about 87 bps. These two channels can deliver a credit
card number in sub-seconds. The screen-setting channel
was found to be much slower at 5.29 bps. Nevertheless,
it was still able to transmit the 16 digits in 11 seconds. The
volume channel was found to be 150 bps. This research
shows that using covert-channels to leak sensitive informa-
tion is completely practical on smartphones.

Reference monitor. Since the reference service resides in
the RIL, it causes a certain delay when making a call. For
a sensitive call, the reference service makes an RPC call to
notify the controller, which on average causes a delay of
4.27ms. When a non-sensitive call is placed, no RPC call
is needed and the time spent in the reference service is just
0.09 ms. Both delays will not be perceptible by users in
practice.

The overhead of the controller of blanking audio when
in exclusive mode affects audio recording applications. We
ran an audio recorder software and measured the time spent
in the controller. On average only 0.85% of the time is spent
in the controller, showing that the overhead of the controller
is indeed minimal.

7 Discussion

7.1 Improvements to the attack

We believe that sensory malware can take the following
measures to improve its performance and stealthiness.

Stealthiness. To further reduce detectability, Soundcomber
can choose the right time to analyze audio recordings:

18http://developer.android.com/intl/fr/guide/

developing/eclipse-adt.html
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Table 3. Performance of speech and tone recognition
Data length
(seconds)

CPU time only
(seconds)

Total time
(seconds)

Power
(mW)

Memory
(MB)

Mean Std Mean Std Mean Std
Speech 19.172 4.485 6.749 2.243 7.168 2.463 93.68 2.945
Tone 45.300 5.814 5.524 0.678 7.694 0.943 101.4 2.883

• Analysis at night: Soundcomber can defer processing
a recording to an opportune moment when heavy CPU
usage is less noticed, for example during the night or
during longer periods of inactivity.

• Analysis when user is not present: the Android plat-
form allows its applications to sense whether the user is
present or not. Tracking the usage allows Soundcomber
to find the right time to analyze recordings, so as to min-
imize the chance of being detected.

• Analysis when charging: prior research proposes to de-
tect malware by tracking the power usage of a phone [8].
To evade this type of detection, Soundcomber can work
on recordings only when the phone is charging and no
power consumption information is available.

• Throttle processing: Soundcomber could easily be
made to refrain from using up all CPU cycles, and in-
stead only steal a small fraction of CPU time to analyze
the recording. This makes detection of its presence even
harder.

Performance. A more technical optimization is using
fixed-point algorithms for DTMF detection. Current smart-
phones typically use ARM (Advanced RISC Machine) pro-
cessors, which often do not include floating-point units,
making floating-point operations expensive as they have to
be emulated. Using fixed-point algorithms should increase
DTMF detection significantly. We leave this exploration to
future work.

Hotline detection. The algorithm used to detect the ser-
vice hotline called can be improved. Brief experiments
with another algorithm [14] (used by Shazam19) to deter-
mine which hotline was called seemed to be more accurate
and efficient. We will study better detection techniques in
follow-up research.

7.2 Defenses

We demonstrate the serious risk that sensory Trojan mal-
ware with even limited privileges poses to users. Sensitive
information from a person’s phone calls can be extracted
stealthily and all known mechanisms are inadequate to stop
the attack. In addition to the defense architecture we built,

19http://www.shazam.com/

here we list some other measures that could be taken to mit-
igate this threat:

Tone playback settings. A simple defense against our
tone-based attack is to to mute local playback of tones
(available on some phones). While not normally selected
by users, selecting it would prevent the tone-based attack,
but not the speech-based attack.

Isolation. A simple defense would be to isolate the phone
application by disallowing simultaneous access to any re-
source used by the phone application from other applica-
tions in the background. Unfortunately, this would also
preclude legitimate applications such as call voice memo,
speech translator and others.

Finer-grained sensor access. Given the sensitive nature of
sensors such as the microphone and video camera, a more
fine-grained permission model should be considered. For
example, recording the microphone during a call could be
a separate permission. Time in general could be used to
regulate accesses (e.g., no recording during periods marked
as meetings in the calendar) or potentially even the place
(e.g., no recording at home).

Mediation of event management. Another problematic
area highlighted by our work is the use of the event system
as a covert channel. Android already has access control in
place for some events, but this should be revisited and tight-
ened, by monitoring and restricting (or having finer-grained
control over) event flows between applications.

Anomaly detection. Anomaly detection could identify
unauthorized uses of the microphone. Unfortunately, some
applications might legitimately need access to the micro-
phone even during phone calls, such as an application which
records all phone calls for archival.

Network monitoring. Monitoring the network for anoma-
lous traffic is unlikely to identify the Deliverer app because
of the small amount of information that is sent over the net-
work. This information can be included as an unnoticeable
overhead in addition to its normal communication with the
remote server (recall that the Deliverer app has legitimate
Internet access). Obfuscated communications (e.g., through
encryption) eliminate the possibility of detecting credit card
numbers being leaked over the network interface.

http://www.shazam.com/


8 Related Work

Using sensors such as the microphone [1] and video [15]
to capture secret information has been studied in prior re-
search. For example, Xu et al. [15] present a data collec-
tion technique using video cameras embedded in 3G smart-
phones. Their malware (also installed as a Trojan) stealthily
records video and transmits it using either email or MMS.
However, it does not automatically extract relevant infor-
mation from the video recording and only limited process-
ing of the captured data is done on the phone, informa-
tion extraction is offloaded to a colluding server, which is
not stealthy. In contrast, Soundcomber performs an effi-
cient data analysis locally and transmits much less informa-
tion (tens of bytes as opposed to video files). Also, with
Soundcomber the malware master is not bombarded with
numerous videos or data files from infected smartphones
that need processing. Soundcomber distributes the compu-
tation onto those phones itself, and the malware master re-
ceives only a small amount of high-value information. As
another example, Cai et al. [4] highlight the problems of
more and more capable smartphones with sensors such as
microphone, camera and GPS and how they can be used to
snoop on the user. They also propose (but did not imple-
ment) a framework that could mitigate such threats, which
involves black-/whitelisting and information flow tracking
using taint analysis. Such a defense framework could have
only limited effect on a malware like Soundcomber: for ex-
ample, tracking taint propagation through covert channels
is known to be difficult.

There are several approaches for detecting malicious ap-
plications on smartphones [3, 8]. For example, Bose et
al. [3] propose behavioral detection of malware by moni-
toring system events and low-level API calls of an appli-
cation on the Symbian platform. To classify applications,
Support Vector Machines (SVM) are used and trained with
both malicious and normal behavior of applications. Be-
havioral detection is promising in general; it is less clear,
however, how a Trojan application would be classified, if
the overt functionality mimics the behaviors deemed legiti-
mate under SVM.

Another approach by Liu et al. [8] relies on monitoring
the power consumption of a smartphone. This is only practi-
cal, though, if the smartphone is running on battery; Sound-
comber can defer work to when the phone is charging. It
also relies on hardware power-consumption monitors (not
present on Android). Kim et al. [7] present a similar ap-
proach.

Instead of detecting malware after it is already present
on the device, Enck et al. [5] propose to analyze the permis-
sions requested by an application (specifically for Android)
when the application is first installed. Rules, which specify
what combinations of permissions are admissible, allow or

prevent the installation. In our work we managed to sep-
arate the necessary permissions over two applications and
let them communicate covertly, evading the security pol-
icy enforced by this approach — each application uses a
“reasonable” set of permissions that in conjunction are dan-
gerous. We also demonstrate that malware can use a legiti-
mate application to deliver data it stole. Follow-up research
by Ongtang et al. [10] not only examines permissions dur-
ing the installation but also monitors their use during run-
time, based on location and time, for example. Semanti-
cally rich policies define permissible interactions between
applications. This, however, does not block covert chan-
nels, which are used by Soundcomber.

Other research has focused on the effect of cellular bot-
nets on the network core, such as the research by Traynor et
al. [13]. Our work, on the other hand, focuses more on how
malware can extract information about individuals.

9 Conclusion

In this paper, we report our research on sensory malware,
a new strain of smartphone malware that uses on-board sen-
sors to collect private user information. We present Sound-
comber, a stealthy Trojan with innocuous permissions that
can sense the context of its audible surroundings to target
and extract a very small amount of high-value data.

As sensor-rich smartphones become more ubiquitous,
sensory malware has the potential to breach the privacy of
individuals at mass scales. While naive approachesmay up-
load raw sensor data to the malware master, we show that
sensory malware can be stealthy and put minimal load on
the malware master’s resources. While we provide a de-
fense for Soundcomber, more research is needed to control
access to other types of sensor data depending on the con-
text in which such data is being requested. We hope that
our work with Soundcomber has highlighted the threat of
stealthy sensory malware to stimulate further research on
this topic.
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